
CHAP T E R 1 6

The conservation biologist’s
toolbox – principles for the design
and analysis of conservation studies
Corey J. A. Bradshaw and Barry W. Brook

“Conservation biology” is an integrative branch of
biological science in its own right (Chapter 1); yet,
it borrows from most disciplines in ecology and
Earth systems science; it also embraces genetics,
dabbles in physiology and links to veterinary sci-
ence and human medicine. It is also a mathemati-
cal science because nearly all measures are
quantified and must be analyzed mathematically
to tease out pattern from chaos; probability theory
is one of the dominant mathematical disciplines
conservation biologists regularly use. As rapid
human-induced global climate change (Chapter
8) becomes one of the principal concerns for all
biologists charged with securing and restoring
biodiversity, climatology is now playing a greater
role. Conservation biology is also a social science,
touching on everything from anthropology, psy-
chology, sociology, environmental policy, geogra-
phy, political science, and resource management
(Chapter 14). Because conservation biology deals
primarilywith conserving life in the face of anthro-
pogenically induced changes to the biosphere, it
also contains an element of economic decision
making (Chapter 14). This is a big toolbox indeed,
so we cannot possibly present all aspects here. We
therefore focus primarily in this chapter on the
ecological components of conservation biology
(i.e. we concentrate on the biology per se).

Conservation biology, and the natural sciences
in particular, require simplified abstractions, or
models, of the real world to make inferences
regarding the implications of environmental
change. This is because ecosystems are inherently
complex networks of species interactions, physical

constraints and random variation due to stochastic
(random) environmental processes. The conserva-
tion biologist’s analytical toolbox therefore com-
prises methods that mainly serve to simplify the
complexity of the real world such that it is under-
standable and (partially) predictable. The quantifi-
cation of these relationships – from the effects of
habitat loss on biodiversity (Chapter 4) to the im-
plications of small population size for extinction
risk (Chapter 10) – is the backbone of analytical
conservation biology and evidence-based decision
making. Without quantified relationships and
robust measures of associated uncertainty, recom-
mendations to improve biodiversity’s plight via
management intervention or policy change are
doomed to fail.

Even though we have chosen to focus on the
techniques dealing with the biological data in the
conservation realm, we can by no means be com-
prehensive; there are simply too many ideas, me-
trics, tests, paradigms, philosophies and nuances
to present within a single chapter of this book.
However, we have striven to compile a compendi-
um of the major approaches employed along with
a list of the best textbook guides andpeer-reviewed
scientific papers providing the detail necessary for
their implementation.We first presentmeasures of
biodiversity patterns followed by a general discus-
sion of experimental design and associated statisti-
cal paradigms. We then introduce the analysis of
abundance time series followed by assessments of
species’ fate risks. The final section is a brief intro-
duction to genetic tools used to assess a species’
conservation status. Although issues of reserve
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design and their associated algorithms are an es-
sential part of the conservation biologist’s toolbox,
they have beendiscussed in detail elsewhere in this
book (Chapter 11) and so do not feature in this
chapter.

16.1 Measuring and comparing
‘biodiversity’

Chapter 2 provides an excellent overview of the
somewhat nebulous concept of ‘biodiversity’ and
a brief mention of how it can be measured, and
Chapter 11 introduces the concept of ‘surrogacy’
(simplified measures of biodiversity patterns) in
conservation planning. Here we develop these
concepts further with particular emphasis on
practical ways to obtain comparable and mean-
ingful metrics over space and time. It should be
noted that regardless of the logistic constraints,
biological consideration and statistical minutiae
driving the choice of a particular set of metrics
for biodiversity, one must not forget to consider
the cost-benefit ratio of any selected method
(Box 16.1) or the difficulties and challenges of
working across cultures (Box 16.2).

16.1.1 Biodiversity indices

It is simply impossible tomeasure every formof life
(Chapter 2), regardless of the chosenmetric or focal
taxon, due to the sheer number of species and the
difficulty of sampling many of the Earth’s habitats
(e.g. ocean depths and tropical forest canopies).We
are therefore required to simplify our measure-
ments into tractable, quantifiable units that
can be compared across time and space. The sim-
plest and perhaps easiest way to do this has tradi-
tionally been to use organism-based metrics that
count, in one way or another, the number of ‘dis-
tinct’ species in a defined area. Species richness
is therefore the base currency used for most biodi-
versity assessments, but it can be complicated
by adjusting for relative abundance, uniqueness,
representativeness, spatial scale or evolutionary
history.

Asmentioned above, a direct count of the num-
ber of species within a defined area is known as
species richness (Ŝ). Species richness can be cor-
rected for total abundance (number of indivi-
duals) to produce the diversity index better
known as Simpson’s Diversity Index ð1� D̂Þ
(Simpson 1949):

Box 16.1 Cost effectiveness of biodiversity monitoring
Toby A. Gardner

There is a shortage of biological datawith which
to meet some of the primary challenges facing
conservation, including the design of effective
protected area systems and the development of
responsible approaches to managing
agricultural and forestry landscapes. This data
shortage is caused by chronic under‐funding of
conservation science, especially in the species‐
rich tropics (Balmford and Whitten 2003), and
the high financial cost and logistical difficulties
ofmulti‐taxafield studies.Wemust therefore be
judicious in identifying the most appropriate
species groups for addressing a particular
objective. Such focal groups are varyingly
termed ‘surrogates’ or ‘indicators’. However,
indicators are often chosen subjectively on the
basis of anecdotal evidence, ‘expert’ opinion,
and ease of sampling. This common approach
has resulted in finite resources being wasted on

the collection of superficial (including the
‘record everything’mantra) and
unrepresentative biodiversity data that may be
of only limited value. This failing threatens to
erode the credibility of conservation science to
funding bodies and policy makers.
To maximize the utility of biodiversity

monitoring, it should adhere to the concepts of
return on investment, and value for money. In
essence this means that field‐workers need to
plan around two main criteria in selecting which
species to sample: (i) what types of data are
needed to tackle the objective in hand; and
(ii) feasibility of sampling different candidate
species groups. Practical considerations should
include the financial cost of surveying, but
also the time and expertise needed to conduct
a satisfactory job. Species groups that satisfy

continues
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1� D
∧ ¼ SS

i¼1niðni � 1Þ
NðN � 1Þ

where S ¼ the number of species, N ¼ the total
number of individual organisms, and ni ¼ the
number of individuals of species i. The unique-

ness of species in a sample can be incorporated
by using indices of evenness (also known as equi-
tability), of which Shannon’s Index (H; also known
mistakenly as the Shannon-Weaver index, or cor-
rectly as the Shannon-Weiner index) is the most
common:

Box 16.1 (Continued)

both demands can be thought of as having a
‘high performance’.
Using a large database from work in the

Brazilian Amazon, Gardner et al. (2008) recently
presented a framework and analytical approach
for selecting such high performance indicator
taxa. The objective of that study was to provide
representative and reliable information on the
ecological consequences of converting tropical
rainforest to Eucalyptus plantations or fallow
secondary regeneration. An audit was
conducted of the cost (in money and time) of
sampling 14 groups of animals (vertebrates and
invertebrates) across a large, managed, lowland
forest landscape. Notably, survey costs varied by
three orders of magnitude and comparing
standardised costs with the indicator value of
each taxonomicgroup clearly demonstrated that
birds and dung beetles (Coleoptera:
Scarabaeinae) are high‐performance groups –
they provide the most amount of valuable
information for the least cost. By contrast, other
groups like small mammals and large moths
required a large investment for little return (see
Box 16.1 Figure). The fact that both birds and
dung beetles are well‐studied and perform
important ecological functions gives further
support to their value for biodiversity
monitoring and evaluation. This important
finding will help conservation biologists in
prioritising the study of the effects of
deforestation on land‐use change in the
Amazon, allowing them to design cost‐effective
field expeditions thatwill deliver themost useful
information for the money available.
Finally when planning biodiversity surveys it is

also important to consider how the data may be
used to address ancillary objectives that may
ensure an even greater return on investment.

One example is the opportunity to synthesise
information frommany small‐scale monitoring
programs to provide robust nation‐wide
assessments of the status of biodiversity without
needing to implement independent studies. A
better understanding of the distribution of
species in threatenedecosystemswill improveour
ability to safeguard the future of biodiversity.We
cannot afford to waste the limited resources we
have available to achieve this fundamental task.
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Box 16.1 Figure Cost effectiveness of different species groups for
indicating habitat change in a multi‐purpose forest landscape in
Brazilian Amazonia.
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Box 16.2 Working across cultures
David Bickford

Establishing conservation projects in countries
with cultures and languages that are different
from your own can be both daunting and
challenging. Without proper thoughtfulness,
openness, flexibility, and (most importantly)
humour, these projects fail for reasons that are
often difficult to distil. All conservation projects
involve a mix of stakeholders (local people,
scientists, conservation practitioners,
governmental and public administrators,
educators, community leaders, etc.) that may
have widely different expectations and
responsibilities for the project. Having worked
on both successful and failed projects with a
diversity of people in nine countries and six
languages, much of what I have learned can be
summed up in two simple yet powerful ideas
for all stakeholders: clear communication and
equity. The two are intricately linked.
Clear communication is an ideal often sought

after, yet rarely achieved. No matter the socio‐
cultural context, a common denominator of
transparency is necessary for a successful
conservation project. Having stakeholders
explicitly state their intentions, desires and
goals is a good start. It also helps elicit
traditional or anecdotal knowledge that can be
useful in formal analysis (e.g. as Bayesian priors,
see Box 16.4). Methods, benefits, and
responsibilities should be outlined and agreed
upon, as well as limits of what objective(s) each
stakeholder perceives as ‘bare minimum’. A
common pitfall is an inability for leaders to
communicate effectively (for many and sundry
reasons), re‐enforcing top‐down stereotypes.
Lateral communication (peer‐to‐peer) can be
more effective and avoids many constraints
imposed by translating among different
languages or cultures, effectively levelling the
playing field and enabling everyone to
participate (at least for heuristic purposes).
Activities that enhance transparent
communication include small group discussions,
workshops, regular and frequent
meetings, project site visits and even informal
gatherings such as shared meals or
recreational activities.
Almost all social hierarchies involve some

component of conflict based around inequity.

People want to balance their personal costs and
benefits relative to others’. Conservation
projects should, wherever possible, bridge gaps
and narrow divides by developing equitably
among stakeholders. By alleviating large
disparities in cost:benefit ratios, responsibilities,
and expectations between different
stakeholders, the project will become more
efficient because there will be less conflict
based on inequity. Equity will evolve and
change, with stakeholders adapting to behave
fairly in a transparent system. In general, teams
will reward members who treat others
unselfishly and promote the overall goals of the
group.
To achieve such a framework of open

communication and equity, impartial
leadership and long periods of interpersonal
relationship building are often required. As
hackneyed as they seem, capacity‐building
exercises, when done correctly, are excellent
mechanisms of sharing information and
building the competency to use it. Engaging
and training local or regional counterparts is an
outstanding method for ensuring clearer
communication and promoting fairness,
instead of forcing information from the top‐
down and expecting results to emerge from the
bottom‐up. Further links between transparency
and equity can be realised through ‘hands‐on’
applications instead of just talking about
concepts. Leaders should participate at all
levels, learning the most menial tasks
associated with the project (e.g. an
administrator should go and catch frogs for a
monitoring project).
In the broadest terms, working across

cultures is a high risk‐high reward
system. Although there are complex obstacles,
the ultimate litmus for biodiversity
conservation might be our ability to learn and
work together across cultures to preserve
nature.

SUGGESTED READING

Reed, M.S. (2008). Stakeholder participation for environ-
mental management: a literature review. Biological
Conservation, 141, 2417–2431.
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Xs
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N
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The index provides a measure of the amount of
disorder in a system, such that communities with
more unique species have higher H (a system
with S = 1, by this definition, is perfectly ordered
but has no diversity). Most of these measures
assume a random sampling of species within a
community, but this assumption is often violated
(Pielou 1966). When sampling is done without
replacement, then indices such as Brillouin’s H
are recommended:

H ¼ 1

N
log

N !

n1!n2!n3. . .

� �

However, where representativeness is un-
known, then rarefaction or resampling can be
used to standardize samples from different areas
or periods to a comparable metric (Krebs 1999).
This includes inferring the total diversity of a
community by using a statistical model to predict
unobserved data (unsampled species). Of course,
the measures presented here are the basic foun-
dations of species diversity indices, but there are
myriad variants thereof, many assumptions that
can be tested and adjusted for, and different dis-
tributions that may be more or less important
under particular circumstances. For an excellent
overview of these issues, we recommend the
reader refers to Krebs (1999).

16.1.2 Scale

Interpretation of the indices and their variants
described above depend on the scale of measure-
ment. Whittaker (1972) introduced the concepts
of alpha (a), beta (b), and gamma (g) diversity to
measure and compare biodiversity patterns over
various spatial scales. a (local) diversity refers to
the quantification of species richness, etc. within a
particular area or ecosystem, whereas b diversity
(differentiation) is the difference in the metric
between ecosystems. In other words, b diversity
is a measure of species uniqueness between areas,
so as b diversity increases, locations differ more
from one another and sample a smaller propor-

tion of the total species richness occurring in the
wider region (Koleff et al. 2003).

Whittaker (1972) sensibly recommended that b
diversity (Whittaker’s bw) should be measured as
the proportion by which the species richness of a
region exceeds the average richness of a single
locality within that region:

bw ¼ S

�a
¼ ða þ b þ cÞ

ð2aþbþcÞ
2

where S = the total number of species recorded
for all sites (regional richness) and the average
number of species found within sites (local rich-
ness), a ¼ the number of species in common in
both sites (e.g. for a simple two-site comparison),
b ¼ the number of species in site 1, and c ¼ the
number of species in site 2. Since then, however,
many other variants of the metric have been pro-
posed. These include comparisons along spatial
or environmental gradients, between patches of
similar habitats, and the degree of similarity be-
tween sites (see references in Koleff et al. 2003).
Indeed, Koleff et al. (2003) reviewed 24 different
measures of b diversity and categorized them
into four main groups: measures of (i) continuity
(similarity in species composition among sites)
and loss (fewer species relative to focal sites);
(ii) species richness gradients; (iii) continuity
only; and (iv) gain and loss. Not only is there
lack of agreement on the most appropriate mea-
sure to use, there is also variation in the pattern of
scaling applied. As such, Koleff et al. (2003) sug-
gested that one should use measures that exhibit
the homogeneity property (i.e. the measure is
independent of the total number of species as
long as the proportions comprising the different
components are constant) and that when mea-
sures reveal different patterns of variation when
based on absolute and proportional species num-
bers, both types should be examined.

g diversity is otherwise known as “geographic-
scale species diversity” (Hunter 2002), which
means it is used as a measure of overall diversity
for the different constituent ecosystems of a re-
gion. This metric becomes particularly valuable
to explain broad-scale (regional or continental)
patterns of species relative to local (site-specific)
indices. Indeed, there are two theoretical types of
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relationships hypothesized for local versus re-
gional species richness (Figure 16.1). Most data-
sets support the existence of a proportional
relationship between local and regional richness
(Type I), albeit local richness always tends to be
less than regional (Gaston 2000). It appears that
Type II relationships (local richness reaching
an asymptote) are rare because local assemblages
do not seem to become saturated as one might
expect from ecological mechanisms such as
density dependence, parasitism and predation
(Gaston 2000).

16.1.3 Surrogacy

An important goal of conservation biology,
which deals with a world of limited resources
and options, is to protect areas that have relative-
ly higher biodiversity than surrounding areas.
Prioritizing areas for conservation, however,
does not always require a complete description
of a site’s biodiversity, but merely relative mea-
sures of differences among them (Margules et al.
2002) described using a representative taxonomic
subset. The quest for a simple estimator, a surro-
gate (i.e. the number, distribution or pattern of
species in a particular taxon in a particular area
thought to indicate a much wider array of taxa)
that is sufficiently related to the biodiversity pa-

rameter of interest is an essential tool in conser-
vation planning (see Chapter 11).

Unfortunately, there is no consensus regarding
which surrogates are best for what purposes
among ecosystems –many problems with current
surrogate approaches remain. For instance, focus-
ing only on a set of species-rich sites may select
only a single habitat type with similar species in
all areas, thus many rare species may be excluded
from protection (Margules and Pressey 2000).
Many methods to overcome these problems
have been developed based on multivariate
measures of biodiversity (e.g. multi-taxa inci-
dence matrices) or reserve-selection algorithms
(e.g. Sarkar and Margules. 2002). Advances have
been made with recent work (Mellin et al. In
review) examining surrogate effectiveness in the
marine realm. It was shown that higher-taxa sur-
rogates (taxonomic levels such as order, family or
genus acting as a surrogate for some lower taxo-
nomic level such as species) outperform cross-
taxa (one taxon is used as a surrogate for another
at the same taxonomic resolution) and subset-
taxa (diversity in one taxonomic group is taken
as representative of the entire community) surro-
gates. Likewise, surrogacy was least effective at
broad (> 100 km) spatial scales.

16.1.4 Similarity, dissimilarity, and clustering

Although indices of biodiversity take on different
aspects of species richness, abundance, evenness
and scale, there are many relatively simple tech-
niques available for comparing samples of spe-
cies and individuals among sites. Most indices of
similarity (> 25 types exist – Krebs 1999) are
simple descriptors that do not lend themselves
easily to measures of uncertainty (e.g. confidence
intervals; although resampling methods can pro-
vide an index of parameter uncertainty), so their
application is generally exploratory. There are
two broad classes of similarity: (i) binary; and
(ii) quantitative. Binary measures are applied to
presence-absence data (i.e. does a species exist in
a defined area?) and can be compared among
sites using contingency tables using metrics such
as Jaccard’s similarity, Sorren’s similarity, simple
matching, or Baroni-Urbani and Buser
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Figure 16.1 Hypothesized relationship between local and regional
species richness (number of species). Type I occurs where local richness
is proportional to, but less than, regional richness; Type II demonstrates
situations where local richness asymptotes regardless of how much
regional richness increases. Reprinted from Gaston (2000).
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coefficients (see Krebs 1999). Of course, some
method to assess the probability of missing spe-
cies in presence-absence surveys should also be
applied to account for insufficient sampling effort
(e.g. MacKenzie et al. 2002).

Quantitative indices require some aspect of in-
dividual abundance to be assessed such as the
number of individuals, biomass, cover or produc-
tivity. Distance dissimilarity indices using abun-
dance data instead of species richness can be
applied to the same binary indices listed above.
Alternatively Euclidean, Manhattan, Canberra or
Bray-Curtis distances between samples can be
calculated using relative abundance measures be-
tween sites (see Krebs 1999). Simple correlation
coefficients such as Pearson product-moment,
Spearman’s rank and Kendall’s t can also be
used in certain situations to compare sites, but
these tend to be insensitive to additive or propor-
tional differences between community samples
(Romesburg 1984) and they depend strongly on
sample size (generally, n > 30 is sufficient for a
reliable characterization of the relationship).

When many focal communities are sampled,
some form of cluster analysis may be warranted.
Cluster analysis refers to any technique that
builds classifications, but there is no preferred
method given that the choice depends on the
type of data being compared. Some considera-
tions for choice include whether the data are:
(i) hierarchical (e.g. taxonomic classifications) or
reticulate (overlapping classifications); (ii) divi-
sive (sample divided into classes) or agglomera-
tive (fine to coarse resolution); (iii) monothetic
(groups distinguished by a single attribute) or
polythetic (many attribute-based); or (iv) qualita-
tive (binary) or quantitative (distance measures)
(see Krebs 1999 for an overview).

16.1.5 Multivariate approaches

When the principal aim of a conservation study is
to quantify the relationships between a large
number ofmeasurements, whether they be of spe-
cies, individuals or abiotic predictors of ecological
patterns, some form of multivariate analysis is
usually required. Over thirty different multivari-
ate techniques have been designed for various

applications (Pérez et al. 2008), each with their
own particular strengths and weaknesses. Ordi-
nation describes those methods that summarize
multivariate information in a low-dimensional
scatter diagram where points represent samples
and distances among them are proportional to
their similarity measured, for example, by Euclid-
ean distance, Bray-Curtis or other indices. Com-
mon techniques include eigen-based principal
components analysis (PCA) or correspondence
analysis (CA) and distance-based multidimen-
sional scaling (MDS), cluster analysis or polar
ordination that provide coefficients quantifying
the relative contribution of component variables
to the reduced-dimension principal axes.

Such multivariate approaches are useful for
visualizing patterns that would otherwise be dif-
ficult or impossible to discern in multidimension-
al space, such as ecologically related species
assemblages or trophic guilds. They can also
summarize the principal gradients of variation
within and among communities and condense
abiotic and other potential explanatory variables
(e.g. climate, soil conditions, vegetation structure,
chemistry, etc.) into simple gradients themselves
that may be used as correlates to explain varia-
tion in species or community patterns. Their dis-
advantage is that they cannot be used to test the
relative likelihood of alternative hypotheses, may
not appropriately reflect statistical power and
effect size, and if applied incautiously, can be
misused to mine data for phantom ‘patterns’
that on closer examination turn out to be random
noise or system-specific peculiarities.

16.2 Mensurative and manipulative
experimental design

Conservation biology typically deals with assess-
ments of previous environmental degradation
and the quantification of its effects on biodiversi-
ty patterns. Another major aim is to design ways
of preserving existing, relatively intact commu-
nities through management intervention (e.g. re-
serve design, control of harvest). Conservation
biologists also devote a large proportion of their
efforts to quantifying the most efficient and
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effective methods for restoring degraded habitats
to some semblance of previous ecological func-
tion. These three principal aims, and the logistical
constraints on large-scale system manipulations,
generally preclude the use of strict experimental
design and control – there are simply too many
extenuating variables modifying species patterns
to control, and the systems of interest are gener-
ally too expensive to apply meaningful manipu-
lations such as those which typify medical
experimentation.

There are some notable exceptions to this rule,
such as replicated microcosm experiments exam-
ining the processes of extinction in rapidly repro-
ducing invertebrate populations. For example,
the frequency of extinction times under condi-
tions of low and high environmental variability
(Drake 2006), the persistence probability of popu-
lations exposed to various spatial configurations
of refugia and intensities of harvest (Fryxell et al.
2006) and the implications for extinction risk of
chaotic and oscillatory behavior in populations
(Belovsky et al. 1999; Hilker and Westerhoff
2007), have all been successfully examined in
controlled laboratory settings. Other well-
known manipulations at broader spatial scales
(albeit with far less experimental control) include
examining the effects of forest fragmentation
on species diversity (Laurance et al. 2002),
controlling the size and configuration of agricul-
tural plots to test bee pollination success (Brosi
et al. 2008), examining the effects of landscape
composition on the initial dispersal success of
juvenile amphibians (Rothermel and Semlitsch
2002), determining the effects of inbreeding de-
pression on individual survival (Jimenez et al.
1994), measuring arthropod responses in tropical
savannas exposed to repeated catchment-
scale prescribed burning (Andersen and Müller
2000) and the many applications of Before-After-
Control-Impact (BACI) experimental designs to
detect point-source changes to systems (Under-
wood 1994).

The above notwithstanding, most conservation
studies rely mainly on quantifying existing pat-
terns (observational studies) or take advantage of
existing gradients or measurable differences in
habitat quality or type to infer mechanisms. This

latter category is sometimes referred to as men-
surative experimentation because it does not ex-
plicitly control for confounding variables
(Hurlbert 1984). There has been plenty of discus-
sion on this topic over the past twenty or so
years (Hurlbert 1984; Krebs 1991; Hargrove
and Pickering 1992; Oksanen 2001; Hurlbert
2004; Oksanen 2004), but it is now accepted
among most conservation biologists that to
make strong inferences on biological patterns
and mechanisms, multiple lines of evidence,
from observational, mensurative and manipula-
tive experiments, are all required at various spa-
tial and temporal scales (Brook et al. 2008).

16.2.1 Hypothesis testing

The classic scientific approach adopts the concept
of falsifiability (Popper 1959) – that is, demonstrat-
ing that a mechanism or phenomenon is not true
(null hypothesis) by controlling all other plausi-
ble determinants except the one of interest and
replicating the experiment sufficiently to avoid
spurious patterns that may arise simply by
chance (see section below). This is still a core
aspect of science because it reduces the chance
of making subjective interpretations of the data
collected. This is the philosophical basis for the
majority of the statistical techniques used by nat-
ural scientists; we attempt to discern pattern from
the ‘noise’ in natural systems using theory to
estimate the probability that our observations
could have been derived merely by chance.

Neyman-Pearson null hypothesis testing
(NHT) begins with the assertion that no differ-
ences exist between experimental units (null hy-
pothesis), with the implicit view that if the null is
unsupported by the data, then one or more ‘alter-
native’ hypotheses must therefore be plausible
(although these are not explicitly evaluated).
Classic statistical theory that has been developed
around the NHT approach provides methods to
estimate the chance of making an error when
rejecting the null hypothesis (Type I or a error);
in other words, this is the probability of conclud-
ing that there is a difference (or effect) when in
fact, there is none. The flip side to this is that
classic NHT tests do not provide an estimate of

320 CONSERVATION BIOLOGY FOR ALL

Sodhi and Ehrlich: Conservation Biology for All. http://ukcatalogue.oup.com/product/9780199554249.do

© Oxford University Press 2010. All rights reserved. For permissions please email: academic.permissions@oup.com



the probability of making an error when failing to
reject the null hypothesis (known as Type II or b
error) – this is essentially the chance one con-
cludes there is no difference (or effect) when in
fact, there is. Various a priori and a posteriorimeth-
ods exist to estimate Type II errors (more precise-
ly, the power of a statistical test taken as 1 – Type II
error), with the latter depending on three princi-
pal elements: sample size (see below), magnitude
of the difference one is attempting to detect (effect
size) and the total variance associated with the
measure used (see Gerrodette 1987; Osenberg
et al. 1994; Steidl et al. 1997; Thomas 1997; Thomas
& Krebs 1997; Thompson et al. 2000 for more
detail on power analyses).

The disconnect between these two estimates of
hypothesis-conclusion error, the implicit confla-
tion of effect size and sample size, as well as the
ambiguity related to just how much chance of
making an error is acceptable (i.e. the moribund
and bankrupt concept of statistical ‘significance’
beyond some arbitrary threshold), have formed
for decades some of the main arguments against

using NHT (reviewed in Elliott and Brook 2007,
see also Burnham and Anderson 2002; Lukacs
et al. 2007). This is especially true in the ecological
and psychological sciences, which are typically
restricted to observational studies and subject to
extensive variability. The alternative approaches
can be classed into the general category of multi-
ple working hypotheses (MWH), including best-
model selection and multimodal inference
(Box 16.3). MWH approaches are now becoming
recognized as providing the most logical and
objective approaches to assess conservation is-
sues because they explicitly consider uncertainty
in the underlying models used to abstract the real
world, rather than relying on simple and arbi-
trarily assessed ‘yes-or-no’ conclusions typical of
the NHT paradigm.

16.2.2 Sample size

Regardless of the statistical paradigm invoked or
analysis method applied, perhaps the least con-
troversial requirement of good scientific inference

Box 16.3 Multiple working hypotheses
Corey J. A. Bradshaw and Barry W. Brook

Science is, at its core, all about evaluating the
support for different ideas – working
hypotheses – about how the world works.
Because they never reflect the totality of real‐
world effects, any such hypothesis can be
considered a model. But how to decide what
ideas have support and which ones should be
discarded?
A traditional approach has been to set up

some null model (which states that there is no
change or measureable effect in a variable of
interest), and then proceed to evaluate
whether the data conform to this model. This
usually involves the arbitrary selection of a
threshold probability of making Type I errors
(i.e. failing to reject a null hypothesis when it is
true) to conclude so‐called ‘significance’ of
effect. This line of reasoning still pervades most
probabilitistic sciences today. Yet many have
called for the abandonment of such subjective
statistical practices (Burnham and Anderson

2004; Lukacs et al. 2007) in favour of a concept
originally forwarded in 1890 by Thomas C.
Chamberlin known as multiple working
hypotheses (Elliott and Brook 2007). The idea is
relatively simple – instead of considering a
single (null) hypothesis and testing whether the
data can falsify it in favour of some alternative
(which is not directly tested), the use of multiple
working hypotheses does not restrict the
number of models considered to abstract the
system under investigation. In fact, the
approach can specifically accommodate the
simultaneous comparison of hypotheses in
systems where it is common to find multiple
factors influencing the observations made (such
as complex ecological systems). This is also
particularly applicable to conservation biology
because experimental manipulation is often
technically difficult or ethically unreasonable.
The basic approach is to construct models

(abstractions of complex systems) that

continues
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Box 16.3 (Continued)

represent combinations of hypotheses
constructed to explain variation in the metric of
interest. Models (plausible hypotheses) then
can be ranked or compared on the basis of
relative evidential support, using methods that
tend to reinforce the principle of parsimony
(the simplest combination of factors providing
the strongest explanatory power) via their bias
correction terms. Model comparison based
on information theory (usually assessed
using Aikaike’s information criterion
– AIC – when conforming to maximum
likelihood approaches – Box 16.4) immediately
supposes that all models are false because they
represent incomplete approximations of the
truth (Elliott and Brook 2007). Weighting AICs
then can be used as a means to assess the
relative distance to ‘truth’ by approximating
Kullback‐Leibler information loss (i.e.
measuring the relative distance between
conceptual reality and the abstraction under
consideration). The Bayesian information
criterion (BIC) is a dimension‐consistent form of
model comparison that provides a measure of
the weight of evidence relative to other models
(the Bayes factor – see Box 16.4), assuming
uninformative prior information. As sample
sizes increase, BIC approaches the estimation of
the dimension of a ‘true’model (not necessarily
embedded in the model set) with a probability
= 1 (Burnham and Anderson 2004). Here the
true model is one which captures main effects
but ignores minor (tapering) influences.
It is generally accepted that AIC performs

well when sample sizes are small (and AIC itself
can be corrected to account for small samples),
but it is a priori weighted to favour more
complex models when tapering effects
(biologically important signals that characterise
full truth but defy reductionism) are present
(Link and Barker 2006). When the aim is to
determine the most important variables
explaining variation in some measured
‘response’, BIC is recommended, especially
when sample sizes are large (Link and Barker
2006). When prediction is the goal, AIC‐based
rankings are preferred.

Multimodel inference is gaining increasing
popularity in conservation biology because it
embraces the concept of multiple working
hypotheses to describe complex systems.
Rather than choose a single ‘best’ model (or
not even test alternative models, as per null
hypothesis testing), multimodel inference is
made on the basis of all models in the a priori
candidate set; here, each model’s prediction is
weighted by its relative support from the data
(e.g. AIC weights or Bayesian posterior
probabilities – see Box 16.4) (Burnham and
Anderson 2002; Burnham and Anderson 2004;
Elliott and Brook 2007). Thus, multimodel
inference is advantageous because it accounts
for uncertainty in the underlying choice of
models used to describe the system of
interest, it permits inference from different
models simultaneously, and it allows for
unconditional ranking of the relative
contribution of variables tested (Elliott and
Brook 2007). Of course, no inference is made
on models/variables not included in the a
priori model set.
The cases where null hypothesis testing can

be justified (see Johnson and Omland 2004;
Stephens et al. 2005; Stephens et al. 2007) are
rare in conservation biology for the reasons
described above (system complexity, lack of
experimentation potential). It is our opinion
that the multiple working hypotheses
approach, even for relatively simple
assessments of effect, should embrace the
philosophy of estimating the strength of
evidence and avoid the pitfalls associated
with arbitrary Type I error probability
thresholds. This can be usefully done even for
a comparison of a null model to a single
alternative, using evidence factors (the ratio
of AIC or BIC weights of the two models – a
concept akin to Bayesian odds ratios) and is
preferable to a classic null hypothesis test
because the likelihood of the alternative
model is explicitly evaluated.
The basic formulae for the most common

model‐ranking criteria (AIC, AICc, QAIC and BIC)
are provided below:

continues
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in conservation biology is obtaining measure-
ments from as many representative and unbiased
units (individuals, plots, habitats, ecosystems,
etc.) as possible. The main reason for obtaining
large sample sizes is that when one measures
only a few units, the chance of obtaining a good
estimate of the central tendency (e.g. mean or
median), variance (i.e. the spread of true values),
or distribution (i.e. shape of the frequency distri-
bution of units such as Normal, binomial,

log-Normal, etc. and extreme values which char-
acterize the tails of distributions) of a parameter is
low. Without good estimates of such parameters,
the ability to tease pattern and noise apart be-
comes increasingly intractable.

There are no rules of thumb for ‘adequate’
sample sizes because they depend on the hypoth-
esis being tested, the inherent variability of the
measures chosen and the temporal or spatial
scales examined. The most useful generalization

Box 16.3 (Continued)

AIC ¼ � 2L þ 2k

where AIC ¼ Akaike’s information criterion,
k ¼ number of model parameters and L ¼ the
maximised log-likelihood function for the
estimated model (MLE). Note that the variance
term of a statistical model, when estimated
(e.g. in a Gaussian model), is a parameter.

AICc ¼ AIC þ 2kðk þ 1Þ
n� k � 1

where AICc ¼ AIC corrected for small sample
size and n ¼ sample size.

QAIC ¼ 1

ĉ
2L þ 2k

where QAIC ¼ quasi-AIC and ĉ ¼ the variance
inflation factor (when data are over-dispersed).
This is commonly used in capture-mark-
recapture model assessments (see White and
Burnham 1999). The small-sample version of
QAIC (QAICc) is calculated the sameway as AICc.
The Bayesian information criterion (BIC) is
calculated as:

�2logepðxjkÞ � BIC ¼ � 2L þ klogen

where x ¼ observed data and P(xjk) ¼ the
likelihood of x given k which is the same as the
MLE used in AIC.
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is that there is no substitute for adequate sam-
pling – more representative samples will inevita-
bly provide more power to discern patterns
(Caughley and Gunn 1996). While we generally
recommend against using classic power tests
(see Krebs 1999 for examples) because of their
reliance on the NHT paradigm, there are techni-
ques that can be applied to estimate adequate
minimum sample size, and the sensitivity of in-
formation-theoretic and Bayesian methods
(Boxes 16.3 and 16.4) to power can be evaluated

in various ways. First, resampling can be used to
assess to what extent sampling should continue,
but this generally requires a moderately large
initial sample. The basic approach is to resample
(with replacement) observations from a distribu-
tion at incrementing subsample sizes (Manly
1997). The sample size at which the desired mag-
nitude of effect can be detected then becomes the
minimum target for future studies applying the
same metric. These are typically known as satura-
tion or rarefaction curves (Heck et al. 1975). Other

Box 16.4 Bayesian inference
Corey J. A. Bradshaw and Barry W. Brook

The most common statistical theory
underpinning conservation (indeed, most
ecological) research today is still likelihood‐
based; i.e. the likelihood of observing the data
at hand based on the expected frequency (from
a probability density function) that such data
would be observed if the same procedure of
data collection was repeated many times
(McCarthy 2007). Maximum likelihood is
therefore the optimisation process that chooses
the model parameters that make the data the
most likely relative to other parameter values.
The process implicitly assumes no prior
information on the relevant parameters, with
the maximum likelihood estimate coinciding
with the most probable values of that
distribution. The approach essentially askswhat
is the probability of observing the data given
that the assumed model structure (hypothesis)
is correct?
An alternative approach is the Bayesian

paradigm, which instead asks: what is the
probability the model/hypothesis is true given
the data? Bayes’ theorem states that the
probability of A occurring given that B has
occurred is equal to the probability that both A
and B occur divided by the probability of B
occurring. Reframing A as a (or set of)
parameter estimate y and B as the data
collected (x), then

PðθjxÞ ¼ PðxjθÞPðθÞ
PðxÞ

where P(y|x) = the posterior probability of
obtaining y given x, and P(y) = the prior

probability of y and P(x) is the probability
of the data – a scaling constant (usually
derived numerically). Thus, P(y) quantifies
the available knowledge about y prior to
collecting x. This can often take the form
of information collected during other
studies that quantify the distribution (e.g.
mean and standard deviation) of y. Not
only does the incorporation of prior
information follow the spirit of scientific
reasoning and logic (i.e. if A and B, then C)
(McCarthy 2007), it generally provides
higher certainty in parameter estimates
because the model is not starting from
scratch (no information). Other advantages
of Bayesian approaches include: (i) errors
are not assumed to follow any particular
distribution, so departures from assumed
data distributions are less problematic than
in maximum likelihood‐based models; (ii)
Markov Chain Monte Carlo (MCMC)
numerical optimisation (a computer‐
intensive method) is more flexible than
maximum likelihood approaches because
there is less of a tendency to become mired
in local minima; and (iii) model parameters
are assumed to be variable (i.e. a
distribution), not fixed (a point value).
The most commonly used software to

implement Bayesian models is the freely
available WinBUGS (Windows Bayesian
inference Using Gibbs Sampling – www.mrc‐
bsu.cam.ac.uk/bugs), which includes a
friendly graphical user interface (GUI).
While exceedingly popular, certain aspects
of the software make it somewhat

continues

324 CONSERVATION BIOLOGY FOR ALL

Sodhi and Ehrlich: Conservation Biology for All. http://ukcatalogue.oup.com/product/9780199554249.do

© Oxford University Press 2010. All rights reserved. For permissions please email: academic.permissions@oup.com



rules of thumb on sufficient sample sizes have
emerged from the statistical literature based on
assumptions regarding the underlying distribu-
tion of the observations (Krebs 1999), the width of
Bayesian posterior credibility intervals compared
to the prior distributions, or on experience from
previous studies.

16.2.3 Replication and controls

One of the most common errors made when
designing conservation studies is insufficient
or biased replication. Replication essentially
means repetition of the experiment (Krebs
1999) and is another type of sample size. In-
sufficient replication will inflate the estimates
of error associated with any metric, so the
statistical power to detect differences (or ef-
fects) even when present declines with reduced
replication. Biased sampling will distort our
ability to make inferences about population-
level differences on the basis of finite samples.
Replication is also essential to avoid the intru-
sion of chance events; for example, the com-
parison of only two sites experiencing different
intensities of modification may be invalidated
because some variable other than the one
being tested (e.g. soil type instead of habitat
quality) may drive the differences observed in,
say, species richness. Only by replicating the
sampling unit sufficiently will the chance of
spurious events occurring be reduced.

It is important though to ensure that the appro-
priate statistical unit is replicated. In the above
example, increasing the number of sub-samples
in each of the two sites does not solve the problem
of insufficient replication – the basic unit of com-
parison is still the ‘site’. This is known as pseudo-
replication because it may appear that increased
effort leads to greater replication of the sampled
unit, when in reality it is simply the reproduction
of non-independent samples (see Hurlbert 1984;
Underwood 1994; Krebs 1999).Without true inde-
pendence among sampling units, estimates of var-
iance, and hence, the power to detect differences
(or effects), are downwardly biased, leading to
higher probabilities of making Type II errors. An-
other form of pseudoreplication can occur when
designs do not account for temporal autocorrela-
tion among samples or repeat sampling of the
same unit (e.g. multiple measures from the same
animal that has been recaptured repeatedly). If
sequential samples within plots are taken over
time, there is a high probability that measures
therein will be correlated. There are many experi-
mental designs and statistical tests that can take
temporal autocorrelation into account (e.g.Muller
et al. 1992; Cnaan et al. 1997; Krebs 1999; Gueor-
guieva and Krystal 2004; Ryan 2007).

Another rule often broken by conservation biol-
ogists is the failure to incorporate some kind of
control in their experimental (manipulative ormen-
surative) design. A control is an experimental unit
that receives no direct treatment. In conservation
terms, these could be, for example, sites that have

Box 16.4 (Continued)

cumbersome to implement, such as the
requirement to re‐initialise parameter
settings whenever models are re‐run. An
alternative interface that is based on the
same basic language is the BRugs library
(R interface to R2WinBUGS) in the R
programming language (R Development
Core Team 2008 – also free, open source
software). BRugs is a command‐based,
object‐orientated implementation
that can be re‐run repeatedly without

having to reset parameter values
each time.
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not been changed (degraded) in a particular way,
areas without invasive species (i.e. the ‘treatment’
being the presence of the invasive species), or sites
where no re-introductions of native species have
occurred.While gradient studies looking for corre-
lations between well-known predictors of biodi-
versity patterns (e.g. forest fragment area
explaining variation in species richness; Laurance
et al. 2002) do not necessarily require ‘controls’ (e.g.
contiguous forest patches of equivalent size) be-
cause the relationships are so well-established,
any study attempting some form of manipulative
ormensurative experimental inferenceMUSThave
controls (note that controlsmust also be replicated)
(Krebs 1999). This applies particularly to the Be-
fore-After-Control-Impact (BACI) design – con-
temporaneous ‘controls’ are essential to be able to
detect any differences (or effects) (Underwood
1994; Krebs 1999).

16.2.4 Random sampling

The complexities of experimental design cannot
be treated sufficiently in this chapter; however,
one last element that applies to all forms of exper-
imental design is the concept of randomization.
Randomization refers to the process of placing a
random spatial or temporal order on the sampling
design such that each unit measures statistically
independent values. While complete randomiza-
tion is not always possible (nor entirely desirable
in cases of stratified random sampling – e.g. Krebs
1999) for many conservation studies, one should
always strive to maximize sample randomization
wherever andwhenever possible. The key point is
to ensure that your sample is representative of the
population parameters about which you are
trying to make inference – this is the fundamental
theoretical tenet of statistical sampling theory.

16.3 Abundance Time Series

if species are the currency of biodiversity assess-
ments, then counts of individuals represent the
principal unit for population dynamics models
used to assess conservation risk (see following
section). The restrictions imposed on comprehen-

sive biodiversity assessment by the sheer number
of species on Earth (Chapter 2) also apply to the
quantification of population dynamics for single
species – there are simply too many species to be
able to obtain detailed demographic data (e.g.
survival, fertility, dispersal, etc. ) for the majority
of them to build population models (see follow-
ing section). Therefore, many types of phenomeno-
logical model have been developed to deal
with sequential censuses (time series) of absolute
or relative population size. Phenomenological sim-
ply means that the dynamical properties these
models emulate represent the end-point phenome-
non of total population size (number of indivi-
duals at any given point in time), that is, the
emergent property of various mechanisms such
as birth, death, reproduction and dispersal.
Therefore, phenomenological models applied to
abundance time series are restricted in their ca-
pacity to explain ecological mechanisms, but they
certainly provide fertile ground for testing broad
hypotheses, describing gross population behav-
ior, and making predictions about population
change (provided mechanisms remain constant).

One of the commonest and simplest questions
conservation biologists ask is whether a popula-
tion is trending or stationary. Indeed, one of the
main criteria used by the World Conservation
Union (IUCN) to define a population or species
as threatened (i.e. either Vulnerable, Endangered
or Critically Endangered) on its Red List (www.
iucnredlist.org) is its rate of decline. As such,
reliably determining both the direction of the
trend (i.e. if declining, to highlight conservation
concern, or if increasing, to indicate successful re-
covery) and quantifying the rate of change, are cen-
tral goals of conservation biology. While it may
seem superficially straightforward to determine
at least the direction of population’s abundance
trend, factors such as the difficulty in censusing
the population (counting all individuals),measure-
ment (observation) error, and the presence of
high seasonal variance in abundancedue tonormal
environmental stochasticity (variation), are com-
mon real-world challenges that can make conclu-
sions of population trajectory uncertain.

Many statistical tools have been developed to
deal with these problems, including traditional
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NHT power analyses to detect trends (e.g. Gerrod-
ette 1987; see also Gerrodette 1993 for associated
software), nonlinear models (e.g. Fewster et al.
2000) and the simultaneous application ofmultiple
time series models (Box 16.3) applied to relative
abundance counts to determine the direction of
trend and strength of feedbacks (e.g. McMahon
et al. 2009). We certainly recommend the multiple
working hypotheses approach (Box 16.3) when
querying abundance time series, but argue that
much more mathematical development and em-
pirical testing is required on this topic.

Trending, or nonstationary populations may
be driven by exogenous influences (“changes in
the environment that affect population change,
but are not themselves influenced by popula-
tion numbers” – Turchin 2003) and/or by en-
dogenous influences (“dynamical feedbacks
affecting population numbers, possibly involv-
ing time lags” – Turchin 2003). It is of course
important to determine the interplay between
such drivers (Bradshaw 2008) because either
may dominate at certain times or on certain
stages of the population, or short-term trends
may simply represent periods of re-equilibra-
tion of longer-term cycles that are not readily
apparent when sampling over too few time
intervals relative to the scale of disturbance or
the species’ generation length.

The development of population dynamics
models in ecology dates back to the early 19th

century (Pearl 1828; Verhulst 1838) and has de-
veloped in the intervening 180 years into an ex-
pansive discipline in its own right, dealing with
the many and complex ways in which organisms
interact within and among populations and spe-
cies. We cannot possibly provide a summary of
all the relevant components of time series analy-
sis here (for an excellent overview with worked
examples, see Turchin 2003), but we do highlight
some of the essential basics.

An important component of extinction models is
the presence of density feedback, because the
strength and form of such endogenous influences
can strongly affect predictions of extinction risk (see
below) (Philippi et al. 1987; Ginzburg et al. 1990). In
situations where detailed measurements of the
ways in which population density modifies demo-

graphic processes are unavailable, phenomenologi-
calmodels applied to abundance time series can still
provide some direction. The idea that populations
tend tofluctuate around an equilibrium abundance,
encapsulated by the general logistic (S-shaped
curve) model (Turchin 2003), was generalized for
time series by Ricker’s model (Ricker 1954) where
the rate of population change (r):

r ¼ log e
Ntþ1

Nt

� �

(N is the discrete population size estimate at time
t), can be expressed as a simple linear function of
Nt declining from an intrinsic (maximum) growth
rate (rm):

r ¼ rm 1� Nt

K

� �� �

When r is positive, the population is growing;
above carrying capacity (K), the population de-
clines. Here, the environment’s K is assumed to
impose some upper limit to total abundance.
There are many variants and complications of
this basic model, and even more debates regard-
ing its role in explaining complex population
dynamics; however, we argue this basic model
has been instrumental in defining some of the
more important theoretical elements of popula-
tion dynamics applied to questions of sustain-
able harvest and extinction risk. Indeed, Turchin
(2003) goes as far as to call it a fundamental
‘law’ of population ecology.

In real-world situations, the negative influence of
density on population rate of change is likely to
applymainly to the regionaroundcarryingcapacity
and be of less importance for small populations
below their minimum viable population size (see
below). For instance, as populations decline, indivi-
duals may lose average fitness due to phenomena
such as inbreeding depression (see Genetic Tools
section below), reduced cooperative anti-predator
behavior (e.g. flocking or herding), reduced mate
availability, and the loss or degradation of coopera-
tive breeding effort (Courchamp et al. 2008). Thus,
density feedback at these small population sizes can
be positive, and this is generally known as an Allee
effect (Allee 1931). Although the phenomenological
evidence for Allee effects using abundance time
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series is sparse –mainly because obtaining observa-
tions at low densities is logistically challenging and
observation error tends to be inflated when detec-
tion probabilities are low – there are some
models that can be applied, such as the Ricker-
Alleemodel:

r ¼ rm 1� Nt

K

� �
Nt � A

K

� �

whereA represents the critical lower Allee thresh-
old abundance below which positive feedback
begins. For a comprehensive discussion of Allee
effects, see Courchamp et al. (2008) and Berec et al.
(2007).

16.4 Predicting Risk

A longstanding goal in conservation biology is
predicting the risk a species, community or eco-
system faces when humans change the environ-
ment. Questions such as: How many individuals
are required for a population to have a high chance
of persisting in the future? What species are most
susceptible to human-induced changes to the environ-
ment? Are some species more likely to become invasive
than others? and What types of species are required
to maintain ecosystem function? pervade the con-
servation literature from purely theoretical to
highly applied perspectives. Not only do these
questions require substantial data to provide re-
alistic direction, the often arbitrary choice of the
degree of risk (defined as a probability of, for
example, becoming threatened, invasive, or fall-
ing below a predefined population size), can add
subjectivity to the assessment.

16.4.1 Cross-taxa approaches

The ranking of species’ life history traits (e.g.
evolved characteristics such as generation time,
mean body mass, reproductive potential; ecolog-
ical attributes such as dispersal capacity, niche
constraints) and environmental contexts, which
together predict a species’ response to environ-
mental change, has received considerable atten-
tion in recent years (e.g. Bennett and Owens 1997;
Owens and Bennett 2000; Purvis et al. 2000; Kolar

and Lodge 2001; Heger and Trepl 2003; Brook
et al. 2006; Pimm et al. 2006; Bielby et al. 2008;
Bradshaw et al. 2008; Sodhi et al. 2008a, b, 2009).
Determining which traits lead to higher extinc-
tion or invasion risk, for instance, is important
for prioritizing management to eradicate harm-
ful invasive species or recover threatened taxa
(Bradshaw et al. 2008). Developing simple predic-
tive generalizations (‘rules’) for categorizing
poorly studied species into categories of relative
risk (proneness) thus becomes a tool to assist
in the efficient allocation of finite conservation
resources.

There is now good correlative evidence that
particular combinations of life history and eco-
logical characteristics (e.g. organism size, dispers-
al capacity, geographic range, and other
reproductive, dispersal, morphological and phys-
iological attributes) influence a species’ risk of
becoming extinct or invasive, with the strength
of effect depending on the spatial scale of mea-
surement, environmental context, and rate of
change of the forcing factor (e.g. deforestation or
climate change) (Bradshaw et al. 2008). Much of
this evidence is derived from three main types of
models: generalized linear mixed-effects models
(e.g. Brook et al. 2006; Bradshaw et al. 2008; Sodhi
et al. 2008a, c), generalized estimating equations
(Bielby et al. 2008) and phylogenetically indepen-
dent contrasts (e.g. Bennett and Owens 1997;
Owens and Bennett 2000; Purvis et al. 2000). The
principal reason why these complex models must
be used instead of simple correlations is because
of the confounding effects of shared evolutionary
traits when making cross-species comparisons
(Felsenstein 1985). In other words, because spe-
cies are related hierarchically according to their
phylogeny (evolutionary relationships and com-
mon ancestry), they are not strictly independent
statistical units, and so their relationships should
be taken into account.

Linear mixed-effects models (Pinheiro and Bates
2000) take phylogeny inferred from Linnaean tax-
onomy into account by using a nested structure in
the random effect component of the model (Black-
burn and Duncan 2001); once the variance compo-
nent due to correlated relationships is taken
(partially) into account, the residual variation can
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be attributed to fixed effects (e.g. life history traits)
of hypothetical interest. Generalized estimating
equations are similar to mixed-effects models, but
the parameters are estimated by taking correla-
tions among observations into account (Paradis
and Claude 2002). Phylogenetically independent
contrasts (PIC) compute the differences in scores
between sister clades and rescale the variance as a
function of evolutionary branch length (Purvis
2008). The PIC approach (and its many variants –
see Purvis et al. 2005; Purvis 2008) is useful, but has
been criticized because of: (i) its sensitivity to errors
in estimated phylogenetic distance (Ramon and
Theodore 1998); (ii) incorrect treatment of extinc-
tion risk as an evolved trait (Putland 2005); (iii)
overestimation of differences between closely
related species (Ricklefs and Starck 1996); (iv) re-
quirement of a complete phylogeny; (v) inability to
deal with categorical variables; and (vi) its restric-
tion of using the NHT framework (Blackburn and
Duncan 2001; Bradshaw et al. 2008). Despite these
criticisms, no onemodeling approach is superior in
all situations, sowe recommend several techniques
be applied where possible.

16.4.2 Population viability analyses

When the goal is to estimate risk to a single spe-
cies or population instead of evolved life histories
that may expose species to some undesirable
state, then the more traditional approach is to
do a population viability analysis (PVA). PVA
broadly describes the use of quantitative methods
to predict a population’s extinction risk (Morris
and Doak 2002). Its application is wide and
varied, tackling everything from assessment of
relative risk for alternative management options
(e.g. Allendorf et al. 1997; Otway et al. 2004; Brad-
shaw et al. 2007), estimating minimum viable
population sizes required for long-term persis-
tence (e.g. Traill et al. 2007 and see section
below), identifying the most important life stages
or demographic processes to conserve or manip-
ulate (e.g. Mollet and Cailliet 2002), setting ade-
quate reserve sizes (e.g. Armbruster and Lande
1993), estimating the number of individuals
required to establish viable re-introduced popu-
lations (e.g. South et al. 2000), setting harvest

limits (e.g. Bradshaw et al. 2006), ranking poten-
tial management interventions (e.g. Bradshaw
et al. in press), to determining the number and
geographical structure of subpopulations re-
quired for a high probability of persistence (e.g.
Lindenmayer and Possingham 1996).

The approaches available to do PVAs are as
varied as their applications, but we define here
the main categories and their most common uses:
(i) count-based; (ii) demographic; (iii) metapopu-
lation; and (iv) genetic. A previous section out-
lined the general approaches for the analysis of
population dynamics and the uses of abundance
time series in conservation biology; count-based
PVAs are yet another application of basic abun-
dance (either total or relative) surveys. Briefly, the
distribution of population growth rates on the
logarithmic scale, constructed from a (ideally)
long time series (or multiple populations) of
abundance estimates, provides an objective
means of projecting long-term population trajec-
tories (either declining, increasing, or stable) and
their variances. The basic premise is that, given a
particular current population size and a mini-
mum acceptable value below which the popula-
tion is deemed to have gone quasi-extinct (i.e. not
completely extinct, but where generally too few
individuals remain for the population to be con-
sidered viable in the long term), the mean long-
term population growth rate and its associated
variance enables the calculation of the probability
of falling below the minimum threshold. While
there are many complications to this basic ap-
proach (e.g. accounting for substantial measure-
ment error, catastrophic die-offs, environmental
autocorrelation, density feedback and demo-
graphic fluctuations (e.g. uneven sex ratio – for
an overview, see Morris and Doak 2002), the
method is a good first approximation if the only
data available are abundance time series. A recent
extension to the approach, based on the multiple
working hypotheses paradigm (Box 16.3), has
been applied to questions of sustainable harvest
(Bradshaw et al. 2006).

A more biologically realistic, yet data-intensive
approach, is the demographic PVA. Count-based
PVAs essentially treat all individuals as equals –
that is, equal probabilities of dying, reproducing
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and dispersing. In reality, because populations
are usually structured into discernable and differ-
entiated age, sex, reproductive and development
stages (amongst others), demographic PVAs
combine different measured (or assumed) vital
rates that describe the probability of performing
some demographic action (e.g. surviving, breed-
ing, dispersing, growing, etc.). Vital rates are ide-
ally estimated using capture-mark-recapture
(CMR) models implemented in, for example, pro-
gram MARK (White and Burnham 1999), but
surrogate information from related species or
allometry (body mass relationships) may also be
used. The most common method of combining
these different life stages’ vital rates into a single
model is the population projection matrix. While
there are many complicated aspects to these,
they allow for individuals in a population to ad-
vance through sequential life stages and perform
their demographic actions at specified rates.
Using matrix algebra (often via computer simula-
tion), static, stochastic and/or density-modified
matrices are multiplied by population vectors
(stage-divided population abundance) to project
the population into the future. The reader is re-
ferred to the comprehensive texts by Caswell
(2001) and Morris and Doak (2002) for all the
gory details. Freely or commercially available
software packages such as VORTEX (www.vor-
tex9.org) or RAMAS (www.ramas.com) can do
such analyses.

Metapopulations are networks of spatially sepa-
rated sub-populations of the same species that are
connected by dispersal (see Chapter 5). A meta-
population can be thought of as a “population of
populations” (Levins 1969) or a way of realistical-
ly representing patches of high habitat suitability
within a continuous landscape. In ways that
are analogous to the structuring of individuals
within a single population, metapopulations
‘structure’ sub-populations according to habitat
quality, patch size, isolation and various other
measures. The mathematical and empirical devel-
opment of metapopulation theory has burgeoned
since the late 1990s (see Hanski 1999) and has
been applied to assessments of regional extinc-
tion risk for many species (e.g. Carlson and Eden-
hamn 2000; Molofsky and Ferdy 2005; Bull et al.

2007). For a recent review of the application of
metapopulation theory in large landscapes, see
Akçakaya and Brook (2008).

Although genetic considerations are not nearly
as common in PVAs as they perhaps should be
(see more in the following section, and the book
by Frankham et al. 2002 for a detailed overview),
there is a growing body of evidence to suggest
that the subtle determinants of extinction are
strongly influenced by genetic deterioration
once populations become small (Spielman et al.
2004; Courchamp et al. 2008). The most common
application of genetics in risk assessment has
been to estimate a minimum viable population size
– the smallest number of individuals required for
a demographically closed population to persist
(at some predefined ‘large’ probability) for some
(mainly arbitrary) time into the future (Shaffer
1981). In this context, genetic considerations are
growing in perceived importance. Genetically vi-
able populations are considered to be those large
enough to avoid inbreeding depression (reduced
fitness due to inheritance of deleterious alleles
by descent), prevent the random accumulation
or fixation of deleterious mutations (genetic drift
and mutational meltdown), and maintain evolu-
tionary potential (i.e. the ability to evolve when
presented with changing environmental condi-
tions; see following section). The MVP size re-
quired to retain evolutionary potential is the
equilibrium population size where the loss of
quantitative genetic variation due to small popu-
lation size (genetic drift) is matched by increasing
variation due to mutation (Franklin 1980). Ex-
panded detail on the methods for calculating ge-
netically effective population sizes and a review
of the broad concepts involved in genetic stochas-
ticity can be found in Frankham et al. (2002) and
Traill et al. (2009). The next section gives more
details.

16.5 Genetic Principles and Tools

The previous sections of this chapter have fo-
cused primarily on the organismic or higher tax-
onomic units of biodiversity, but ignored the sub-
organism (molecular) processes on which
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Box 16.5 Functional genetics and genomics
Noah K. Whiteman

Conservation genetics has influenced the field
of conservation biology primarily by yielding
insight into the provenance of individuals and
the ecological and evolutionary relationships
among populations of threatened species. As
illuminated in the section on genetic diversity,
conservation genetics studies rely primarily on
genomic data obtained from regions of the
genome that are neutral with respect to the
force of natural selection (neutral markers).
Conservation biologists are also interested in
obtaining information on functional (adaptive)
differences between individuals and
populations, typically to ask whether there is
evidence of local adaptation (Kohn et al. 2006).
Adaptive differences are context‐dependent
fitness differences between individuals and are
ultimately due to differences between
individuals in gene variants (alleles) at one or
multiple loci, resulting in differences in
phenotype. These phenotypic differences are
always the result of gene‐environment
interactions and can only be understood in that
light. However, unraveling the association
between particular nucleotide substitutions
and phenotype is challenging even for scientists
who study genetic model systems.
Adaptive differences between individuals

and populations are difficult to identify at the
molecular genetic level (see also Chapter 2).
This is typically because genomic resources are
not available for most species. However, with a
set of unlinked molecular markers scattered
throughout the genome, such as
microsatellites, it is possible to identify
candidate loci of adaptive significance that are
physically linked to these markers. If the
frequency of alleles at these loci is significantly
greater or less than the expectation based on
an equilibrium between migration and genetic
drift, one can infer that this locus might have
experienced the effects of natural selection.
These analyses are often referred to as outlier
analyses and aim to find genes linked to neutral
markers that are more (or less) diverged
between individuals and populations than the
background (neutral) divergence (Beaumont

2005). Despite the immediate appeal of these
studies, moving from identification of outlier
loci to identification of the function of that
locus and the individual nucleotide differences
underlying that trait is a difficult task.
The genomics revolution is now enabling

unprecedented insight into the molecular basis
of fitness differences between individuals.
Completed genome sequences of hundreds of
plants and animals are available or in progress
and next generation sequencing technology is
rapidly increasing the number of species thatwill
become genomically characterized. Massively
parallel sequencing technology is enabling the
rapid characterization of entire genomes and
transcriptomes (all of the expressed genes in a
genome) at relatively low cost. Currently,
sequence reads from these technologies are, on
average, <500 base pairs in length and so
traditional Sanger sequencing still outperforms
massively parallel technology at the level of the
individual read. Digital gene expression (where
all of the expressed genes are sequenced and
counted; Torres et al. 2008) and microarray
analysis allows one to study differences in global
gene expression without a priori information on
the identity of genes used in the analysis. Single
nucleotide polymorphism (SNP) analysis is likely
to be an effective tool in identifying loci and
individual substitutions that are associated with
differences in trait values between individuals,
even when pedigree information and
heritabilities of traits are not available, as is the
case for most threatened species.
Although there is considerable debate over

the relative importance of cis regulatory
mutations (in non-coding sequences flanking
protein-coding genes) versus structural
mutations (in protein coding genes) in the
molecular basis of phenotypic evolution across
species, methods are best developed for
detecting a signature of selection at codons
within protein-coding genes. In this case, a
conservation biologist may be interested in
knowingwhat loci andwhat codons within that
gene have experienced positive, adaptive
selection. The redundancy of the DNA code

continues
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evolution itself operates. As such, no review of
the conservation biologist’s toolbox would be
complete without some reference to the huge
array of molecular techniques now at our dispos-
able used in “conservation genetics” (Box 16.5).
Below is a brief primer of the major concepts.

Conservation genetics is the discipline dealing
with the genetic factors that affect extinction risk
and the methods one can employ to minimize
these risks (Frankham et al. 2002). Frankham et
al. (2002) outlined 11 major genetic issues that the
discipline addresses: (i) inbreeding depression’s
negative effects on reducing reproduction and
survival; (ii) loss of genetic diversity; (iii) reduction

in gene flow among populations; (iv) genetic drift;
(v) accumulation and purging of deleterious muta-
tions; (vi) genetic adaptation to captivity and its
implications for reintroductions; (vii) resolving
uncertainties of taxonomic identification; (viii)
defining management units based on genetic ex-
change; (ix) forensics (species identification and
detection); (x) determining biological processes
relevant to species management; and (xi) out-
breeding depression. All these issues can be as-
sessed by extracting genetic material [e.g. DNA
(deoxyribonucleic acid), RNA (ribonucleic acid)]
from tissue sampled from live or dead indivi-
duals (see Winchester and Wejksnora 1995 for a

Box 16.5 (Continued)

means that in protein‐coding genes, nucleotide
substitutions are either synonymous – the
amino acid coded by the codon remains the
same, or non‐synonymous – the corresponding
amino acid changes. Comparing the rates of
non‐synonymous/synonymous substitutions
(the o rate ratio) of a gene between species can
provide evidence of whether that gene or locus
is under selection (Yang 2003). A variety of
methods are available to estimate o ratios for a
given gene tree. When o <1, purifying selection
is inferred because non‐synonymous
substitutions are deleterious with respect to
fitness; when o = 1, neutral evolution is inferred
because there is no difference in fitness
between non‐synonymous and synonymous
substitutions; and when o >1, positive selection
is inferred because non‐synonymous
substitutions are favored by natural selection.
In their most general form, o ratios are
averaged across all nucleotide sites, but
because non‐synonymous rates are often quite
variable across a gene, o values can also be
estimated for individual codons. While it is
possible to test for significant differences
among o values, the most conservative
interpretation holds that adaptive evolution
has occurred only when o values are >1.
However, even when o values are >1,
demographic forces can elevate o ratios if there
is an imbalance between genetic drift and

purifying selection. Because several non‐
mutually exclusive factors can affect o ratios,
comparisons using these data, which are always
only correlative in nature, need to be
interpreted with caution.
The genomics research horizon is

rapidly changing all areas of biology and
conservation biology is no exception.
A new arsenal of genomic and analytical
tools is now available for conservation
biologists interested in identifying adaptive
differences between individuals and
populations that will complement traditional
neutral marker studies in managing wildlife
populations.
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good introduction to the array of methods used to
do this).

Of these 11 themes, the first three are perhaps
the most widely applicable elements of conserva-
tion genetics, and so deserve special mention
here. Inbreeding depression can be thought of as
an Allee effect because it exacerbates reductions
in average individual fitness as population size
becomes small. Inbreeding is the production of
offspring by related individuals resulting from
self-fertilization (e.g. the extreme case of ‘selfing’
in plants) or by within-‘family’ (e.g. brother-sis-
ter, parent-offspring, etc.) matings. In these cases,
the combination of related genomes during fertil-
ization can result in reductions in reproduction
and survival, and this is known as inbreeding
depression. There are several ways to measure
inbreeding: (i) the inbreeding coefficient (F) mea-
sures the degree of parent relatedness derived
from a pedigree analysis (strictly – the probability
that an allele is common among two breeding
individuals by descent); (ii) the average
inbreeding coefficient is the F of all individuals
in a population; and (iii) inbreeding relative to
random breeding compares the average related-
ness of parents to what one would expect if the
population was breeding randomly.

The amount of genetic diversity is the extent of
heritable variation available among all indivi-
duals in a population, species or group of species.
Heterozygosity is the measure of the frequency of
different of alleles [alternative forms of the same
segment of DNA (locus) that differ in DNA base
sequence] at the same gene locus among indivi-
duals and is one of the main ways genetic diver-
sity is measured. Populations with few alleles
have generally had their genetic diversity re-
duced by inbreeding as a result of recent popula-
tion decline or historical bottlenecks. Populations
or species with low genetic diversity therefore
have a narrower genetic template from which to
draw when environments change, and so their
evolutionary capacity to adapt is generally
lower than for those species with higher genetic
variation.

Habitat fragmentation is the process of habitat
loss (e.g. deforestation) and isolation of ‘frag-
ments’, and is one of the most important direct

drivers of extinction due to reductions in habitat
area and quality (Chapter 5). Yet because frag-
mentation also leads to suitable habitats for par-
ticular species assemblages becoming isolated
pockets embedded within (normally) inhospita-
ble terrain (matrix), the exchange of individuals,
and hence, the flow of their genetic material, is
impeded. Thus, even though the entire popula-
tion may encompass a large number of indivi-
duals, their genetic separation via fragmentation
means that individuals tend to breed less ran-
domly and more with related conspecifics, thus
increasing the likelihood of inbreeding depres-
sion and loss of genetic diversity. For a more
comprehensive technical demonstration and dis-
cussion of these issues, we recommend the reader
refers to Frankham et al. (2002).

16.6 Concluding Remarks

The multidisciplinarity of conservation biology
provides an expansive source of approaches, bor-
rowed from many disciplines. As such, this inte-
grative science can appear overwhelming or even
intimidating to neophyte biologists, especially
considering that each approach discussed here
(and many more we simply did not have space
to describe) is constantly being reworked, im-
proved, debated and critiqued by specialists.
But do not despair! The empirical principles of
conservation biology (again, focusing here on
the ‘biology’ aspect) can be broadly categorized
into three major groups: (i) measuring species
and abundance; (ii) correlating these to indices
of environmental change; and (iii) estimating
risk (e.g. of extinction). Almost all of the ap-
proaches described herein, and their myriad var-
iants and complications, relate in some way to
these aims. The specific details and choices de-
pend on: (i) data quality; (ii) spatial and temporal
scale; (iii) system variability; and (iv) nuance of
the hypotheses being tested.

When it comes to the choice of a particular
statistical paradigm in which to embed these
techniques, whether it be null hypothesis test-
ing or multiple working hypotheses (Box 16.3),
likelihood-based or Bayesian inference (Box
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16.4), is to some extent open to personal
choice. We have been forthright regarding
our particular preferences (we consider multi-
ple working hypotheses to be generally superi-
or to null hypothesis testing, and Bayesian
outperforming likelihood-based inference), but
there are no hard-and-fast rules. In general
terms though, we recommend that conserva-
tion biologists must at least be aware of the
following principles for any of their chosen
analyses:

· Adequate and representative replication of the
appropriate statistical unit of measure should be
planned from the start.

· The high probability that results will vary de-
pending on the spatial and temporal scale of inves-
tigation must be acknowledged.

· Choosing a single model to abstract the complex-
ities of ecological systems is generally prone to over-
simplification (and often error of interpretation).

· Formal incorporation of previous data is a good
way of reducing uncertainty and building on past
scientific effort in a field where data are inevitably
challenging to obtain; and

· Multiple lines of evidence regarding a specific
conclusion will always provide stronger inference,
more certainty and better management and policy
outcomes for the conservation of biodiversity.

This chapter represents the briefest of glimpses
into the array of techniques at the disposal of
conservation biologists. We have attempted to
provide as much classic and recent literature to
guide the reader toward more detailed informa-
tion, and in this spirit have provided a list of what

Box 16.6 Useful Textbook Guides
Corey J. A. Bradshaw and Barry W. Brook

It is not possible to provide in‐depth
mathematical, experimental or analytical detail
for the approaches summarised in this chapter.
So instead we provide here a list of important
textbooks that do this job. The list is not
exhaustive, but it will give emerging and
established conservation biologists a solid
quantitative background on the issues
discussed in this chapter – as well as manymore.

SUGGESTED READING

Bolker, B. M. (2008). Ecological models and data in R.
Princeton University Press, Princeton, NJ.

Burnham, K. P. and Anderson, D. R. (2002).Model selection
and multimodal inference: a practical information‐theo-
retic approach. 2nd edn. Springer‐Verlag, New York, NY.

Caswell, H. (2001). Matrix population models: construc-
tion, analysis, and interpretation. 2nd edn. Sinauer As-
sociates, Inc., Sunderland, MA.

Caughley, G. and Gunn, A. (1996). Conservation biology in
theory and practice. Blackwell Science, Cambridge, MA.

Clark, J. S. (2007). Models for ecological data: an intro-
duction. Princeton University Press, Princeton, NJ.

Ferson, S. and Burgman, M., eds (2002). Quantitative meth-
ods for conservation biology. Springer, New York, NY.

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002).
Introduction to conservation genetics. Cambridge Uni-
versity Press, Cambridge, UK.

Krebs, C. J. (1999). Ecological methodology. 2nd edn.
Benjamin Cummings, Upper Saddle River, NJ.

Krebs, C. J. (2009). Ecology: the experimental analysis of
distribution and abundance. 6th edn. Benjamin Cum-
mings, San Francisco, CA.

Lindenmayer, D. and Burgman, M. (2005). Practical con-
servation biology. CSIRO (Australian Commonwealth
Scientific and Industrial Research Organization) Publish-
ing, Collingwood, Australia.

McCallum, H. (2000). Population parameters: estimation
for ecological models. Blackwell Science, Oxford, UK.

McCarthy, M. A. (2007). Bayesian methods for ecology.
Cambridge University Press, Cambridge, UK.

Millspaugh, J. J. and Thompson, F. R. I., eds (2008).Models
for planning wildlife conservation in large landscapes.
Elsevier, New York, NY.

Morris, W. F. and Doak, D. F. (2002). Quantitative conser-
vation biology: theory and practice of population viabil-
ity analysis. Sinauer Associates, Sunderland, MA.

Turchin, P. (2003). Complex population dynamics: a theo-
retical/empirical synthesis. Princeton University Press,
Princeton, NJ.
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we consider to be some of the better textbook
guides which provide an expanded treatment of
the different techniques considered (Box 16.6). A
parting recommendation – nomatter how sophis-
ticated the analysis, the collection of rigorous
data using well-planned approaches will always
provide the best scientific outcomes.

Summary

· Conservation biology is a highly multidisciplin-
ary science employing methods from ecology, Earth
systems science, genetics, physiology, veterinary sci-
ence, medicine, mathematics, climatology, anthropol-
ogy, psychology, sociology, environmental policy,
geography, political science, and resource manage-
ment. Herewe focus primarily on ecological methods
and experimental design.

· It is impossible to census all species in an ecosys-
tem, so many different measures exist to compare
biodiversity: these include indices such as species
richness, Simpson’s diversity, Shannon’s index and
Brouillin’s index.Many variants of these indices exist.

· The scale of biodiversity patterns is important to
consider for biodiversity comparisons: a (local), b (be-
tween-site), and g (regional or continental) diversity.

· Often surrogate species – the number, distri-
bution or pattern of species in a particular taxon
in a particular area thought to indicate a much
wider array of taxa – are required to simplify
biodiversity assessments.

· Many similarity, dissimilarity, clustering, and
multivariate techniques are available to compare
biodiversity indices among sites.

· Conservation biology rarely uses completely
manipulative experimental designs (although
there are exceptions), with mensurative (based
on existing environmental gradients) and obser-
vational studies dominating.

· Two main statistical paradigms exist for com-
paring biodiversity: null hypothesis testing and
multiple working hypotheses – the latter paradigm
is more consistent with the constraints typical of
conservation data and so should be invoked when
possible. Bayesian inferential methods generally
provide more certainty when prior data exist.

· Large sample sizes, appropriate replication and
randomization are cornerstone concepts in all con-
servation experiments.

· Simple relative abundance time series (sequen-
tial counts of individuals) can be used to infer more
complex ecological mechanisms that permit the esti-
mation of extinction risk, population trends, and
intrinsic feedbacks.

· The risk of a species going extinct or becoming
invasive can be predicted using cross-taxonomic
comparisons of life history traits.

· Population viability analyses are essential tools
to estimate extinction risk over defined periods
and under particular management interventions.
Many methods exist to implement these, including
count-based, demographic, metapopulation, and
genetic.

· Many tools exist to examine how genetics affects
extinction risk, of which perhaps the measurement
of inbreeding depression, gene flow among popula-
tions, and the loss of genetic diversity with habitat
degradation are the most important.

Suggested reading

See Box 16.6.

Relevant websites

· Analytical and educational software for risk as-
sessment: www.ramas.com.

· Population viability analysis software: www.vor-
tex9.org.

· Ecological Methodology software–Krebs (1999):
www.exetersoftware.com/cat/ecometh/eco-
methodology.html.

· Capture-mark-recapture analysis software:
http://welcome.warnercnr.colostate.edu/
gwhite/mark/mark.htm.

· Analysis of data from marked individuals: www.
phidot.org.

· Open-source package for statistical computing:
www.r-project.org.

· Open-source Bayesian analysis software: www.
mrc-bsu.cam.ac.uk/bugs/.
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